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Random close packing revisited: Ways to pack frictionless disks
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We create collectively jammed (CJ) packings of 50-50 bidisperse mixtures of smooth disks in two dimen-
sions (2D) using an algorithm in which we successively compress or expand soft particles and minimize the
total energy at each step until the particles are just at contact. We focus on small systems in 2D and thus are
able to find nearly all of the collectively jammed states at each system size. We decompose the probability
P(¢) for obtaining a collectively jammed state at a particular packing fraction ¢ into two composite functions:
(1) the density of CJ packing fractions p(¢), which only depends on geometry, and (2) the frequency distri-
bution B(¢), which depends on the particular algorithm used to create them. We find that the function p(¢) is
sharply peaked and that B(¢) depends exponentially on ¢. We predict that in the infinite-system-size limit the
behavior of P(¢) in these systems is controlled by the density of CJ packing fractions—not the frequency
distribution. These results suggest that the location of the peak in P(¢) when N—o can be used as a
protocol-independent definition of random close packing.
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I. INTRODUCTION

Developing a statistical-mechanical description of dense
granular materials, structural and colloidal glasses, and other
jammed systems [1] composed of discrete macroscopic
grains is a difficult, long-standing problem. These amor-
phous systems possess an enormously large number of pos-
sible jammed configurations; however, it is not known with
what probabilities these configurations occur since these sys-
tems are not in thermal equilibrium. The possible jammed
configurations do not occur with equal probability—in fact,
some are extremely rare and others are highly probable.
Moreover, the likelihood that a given jammed configuration
occurs depends on the protocol that was used to generate it.

Despite difficult theoretical challenges, there have been a
number of experimental and computational studies that have
investigated jammed configurations in a variety of systems.
The experiments include studies of static packings of ball
bearings [2,3], slowly shaken granular materials [4,5], sedi-
menting colloidal suspensions [6], and compressed colloidal
glasses [7]. The numerical studies include early Monte Carlo
simulations of dense liquids [8], collision dynamics of grow-
ing hard spheres [9], serial deposition of granular materials
under gravity [10-12], various geometrical algorithms
[13-15], compression and expansion of soft particles fol-
lowed by energy minimization [16], and other relaxation
methods [17].

The early experimental and computational studies found
that dense amorphous packings of smooth, hard particles fre-
quently possess packing fractions near random close packing
¢rep» Which is approximately 0.64 in three-dimensional (3D)
monodisperse systems [18] and 0.84 in the 2D bidisperse
systems discussed in this work [15,19]. However, more re-
cent studies have emphasized that the packing fraction at-
tained in jammed systems can depend on the process used to
create them. Different protocols select particular configura-
tions from a distribution of jammed states with varying de-
grees of positional and orientational order [20].
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Recent studies of hard-particle systems have also shown
that different classes of jammed states exist with different
properties [21]. For example, in locally jammed (LJ) states,
each particle is unable to move provided all other particles
are held fixed; however, groups of particles can still move
collectively. In contrast, in collectively jammed (CJ) states
neither single particles nor groups of particles are free to
move (excluding “floater” particles that do not have any con-
tacts). Thus, CJ states are more “jammed” than LJ states.

In this article we focus exclusively on the properties of
collectively jammed states. These states are created using an
energy minimization procedure [16,19] for systems com-
posed of particles that interact via soft, finite-range, purely
repulsive, and spherically symmetric potentials. Energy
minimization is combined with successive compressions and
decompressions of the system to find states that cannot be
further compressed without producing an overlap of the par-
ticles. As explained in Sec. II, this procedure yields collec-
tively jammed states of the equivalent hard-particle system.

In previous studies of collectively jammed states created
using the energy-minimization method, we showed that the
probability distribution of collectively jammed packing frac-
tions narrows as the system size increases and becomes a &
function located at ¢, in the infinite-system-size limit
[16,19]. We found that ¢, was similar to values quoted pre-
viously for random close packing [18]. The narrowing of the
distribution of CJ packing fractions as the system size in-
creases is shown in Fig. 1 for 2D bidisperse systems. How-
ever, it is still not clear why this happens. Why is it so dif-
ficult to obtain a collectively jammed state with ¢ # ¢y in the
large-system limit? One possibility is that very few collec-
tively jammed states exist with ¢ # ¢,. Another possibility is
that collectively jammed states do exist over a range of pack-
ing fractions, but only those with packing fractions near ¢
are very highly probable.

Below, we will address this question and other related
problems by studying the distributions of collectively
jammed states in small bidisperse systems in 2D. For such
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FIG. 1. The probability distribution P(¢) to obtain a collectively
jammed state at packing fraction ¢ in 2D bidisperse systems with
N=18 (dotted line), 32 (dashed line), 64 (dot-dashed line), and 256
(solid line).

systems we we will be able to generate nearly all of the
collectively jammed states. Enumeration of nearly all CJ
states will allow us to decompose the probability density
P(¢) to obtain a collectively jammed state at a particular
packing fraction ¢ into two contributions

P(¢p) =p(h)B(). (1)

The factor p(¢) in the above equation represents the density
of collectively jammed states [i.e., p(¢)d¢p measures how
many distinct collectively jammed states exist within in a
small range of packing fractions d¢]. The factor B denotes
the effective frequency (i.e., the counts averaged over a small
region of ¢) with which these states occur.

We note that the density of states p(¢) is determined
solely by the topological features of configurational space; it
is thus independent of the the protocol used to generate these
states. In contrast, the quantity B(¢) is protocol dependent,
because it records the average frequency with which a CJ
state at ¢ occurs for a given protocol. For example, for al-
gorithms that allow partial thermal equilibration during com-
pression and expansion, the frequency distributions are
shifted to larger ¢ compared to those that do not involve
such equilibration.

The decomposition (1) will allow us to determine which
contribution, p(¢) or B(¢), controls the shape of the prob-
ability distribution P(¢) in the large-system limit. Others
have studied the inherent structures of hard-sphere liquids
and glasses, but have not addressed this specific question
[22,23]. We will show below that p(¢) controls the width of
the distribution of CJ states in the infinite system-size limit.
We also have some evidence that the location of the peak in
P(¢) in the large-N limit is also determined by the large-N
behavior of p(¢). We will also argue that for many proce-
dures the protocol dependence of the frequency distribution
B(p) is too weak to substantially shift the peak in P(¢) for
large systems. Thus, our results suggest that for a large class
of algorithms the location of the peak in P(¢) can be used as
a protocol-independent definition of random close packing in
the infinite-system-size limit.
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II. METHODS

Our goal is to enumerate the collectively jammed configu-
rations in 2D bidisperse systems composed of smooth, repul-
sive disks. We will focus on bidisperse mixtures composed
of N/2 large and N/2 small particles with a diameter ratio
n=1.4 because it has been shown that these systems do not
easily crystallize or phase separate [15,16]. We consider sys-
tem sizes in the range N=4-256 particles. For N=<10, we
were able to find nearly all of the collectively jammed states.
For N=12 (14) we found more than 90% (60%) of the total
number. Since the number of collectively jammed states
grows so rapidly with N, we are not able to calculate a large
fraction of the CJ states for N>14, but as we will show
below, we can still make strong conclusions about the shape
of the distribution of CJ states in large systems.

We utilize an energy-minimization procedure to create
collectively jammed states [16]. We assume that the particles
interact via the purely repulsive linear spring potential

€
V(ry) = 5(1 - rild;)*O(d;ilr; - 1), ()

where € is the characteristic energy scale, r;; is the separation
of particles i and j, d;j=(d;+d;)/2 is their average diameter,
and O(x) is the Heaviside step function. The potential (2) is
nonzero only for r;;<d;—i.e., when the particles overlap.
Jammed states are obtained by successively growing or
shrinking particles followed by relaxation via potential en-
ergy minimization until all particles (excluding floaters) in
the system are just at contact. In these prior studies, we
showed that the distribution of collectively jammed states
does not depend sensitively on the shape of the repulsive
potential V(r;;). Note that our process for creating jammed
states differs from the fixed-volume energy-minimization
procedure implemented in Ref. [16]. In the description be-
low, the energies and lengths are measured in units of € and
the diameter of the smaller particle d;.

For each independent trial, the procedure begins by
choosing a random configuration of N particles at an initial
packing fraction ¢; in a square box with unit length and
periodic boundary conditions. The positions of the centers of
the particles are uncorrelated and distributed uniformly in the
box. We have found that the results do not depend on the
initial volume fraction ¢; as long it is significantly below the
peak in p(¢). We chose ¢;=0.60 for most system sizes.

After initializing the systems, we find the nearest local
potential energy minimum using the conjugate gradient algo-
rithm [24]. We terminate the energy-minimization procedure
when either of the following two conditions is satisfied: (1)
two successive conjugate gradient steps n and n+1 yield
nearly the same total potential energy per particle, (V,,,
-V,)/V,<8=107'°, or (2) the total potential energy per par-
ticle is extremely small, V,,, < V,;,=1071°.

Following the potential energy minimization, we decide
whether the system should be compressed or expanded to
find the jamming threshold. If V, ;> V,..=2X 1071, par-
ticles have nonzero overlap and thus small and large particles
are reduced in size by Ad,=d|A¢/(2¢) and Ad,=nAd,, re-
spectively. If, on the other hand, V, ;<V,;,, the system is
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below the jamming threshold and all particles are thus in-
creased in size. After the system has been expanded or com-
pressed, it is relaxed using potential energy minimization and
the process is repeated. Each time the procedure switches
from expansion to contraction or vice versa, the packing
fraction increment A ¢ is reduced by a factor of 2. The initial
expansion rate was A¢,=107.

When the total potential energy per particle falls within
the range V> V> V., the process is terminated and the
“jammed” packing fraction is recorded. If the final state con-
tains floater particles with two or fewer contacts, we remove
them, minimize the total potential energy, and slightly com-
press or expand the remaining particles to find the jamming
threshold. Note that the final configurations are slightly com-
pressed with overlaps in the range 10‘9<1—r,-j/d,»j< 1078,
We have verified that our results do not depend strongly on
the parameters Vi, Vinax, and A¢;.

For each system size N, this process is repeated using n,
independent random initial conditions and the resulting
jammed configurations are analyzed to determine whether
they are collectively jammed and unique.

III. ANALYSIS OF JAMMED STATES

To verify if a given final configuration is collectively
jammed we analyze the eigenvalue spectra of the dynamical
(or rigidity) matrix [16] M,, ;s where the indices i and j
refer to the particles and a,B=x,y represent the Cartesian
coordinates. For a system with N, floaters and N'=N-N;
particles forming a connected network the indices i and j
range from 1 to N'. Thus, the dynamical matrix has dN' rows
and columns, where d=2 is the spatial dimension. By differ-
entiating the interparticle potential we find that the elements
of the dynamical matrix with i # j are given by [25]

t“ A A A A
Mg jp=- ﬁ(ﬁaﬁ_ rijarijﬁ) = Cijlijalijps (3)
ij

where #;;=dV/dr;; and cij=c92V/ &rizj, while those with i=j are
given by

Miqip=— > M jp- (4)
J

The dynamical matrix (3) and (4) has dN’ real eigenval-
ues {&}, d of which are zero due to translational invariance
of the system. In a collectively jammed state no set of par-
ticle displacements is possible without creating an overlap-
ping configuration; therefore, the dynamical matrix has ex-
actly dN' —d nonzero eigenvalues. In our simulations we use
the criterion |&|> &, for nonzero eigenvalues, where &,
=107° is the noise threshold for our eigenvalue calculations.
We note that our energy-minimization algorithm for cre-
ating jammed states does occasionally yield a configuration
that is not collectively jammed. These states, however, are
not considered in the current study. The number of trials that
yield collectively jammed states out of the original n; trials
is denoted n,. The fraction of trials that give locally but not
collectively jammed states (n,—n,)/n, decreases with in-
creasing system size from ~5% at N=6 to less than 1% for

N>12.
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FIG. 2. Five distinct collectively jammed states that exist at the
same packing fraction ¢=0.810 73 for a 2D bidisperse system with
N=12 particles. In (a)—(d), unshaded particles are in the same po-
sitions, while the shaded particles are in different locations from
panel to panel. Particles labeled 1, 2, and 3 are in different positions
in panels (d) and (e), while the other particles are in the same
positions.

We determine whether two collectively jammed states are
distinct by comparing the sorted lists of the nonzero eigen-
values of their respective dynamical matrices. If the relative
difference between two corresponding eigenvalues differs by
more than &;;=1073, the configurations are treated as dis-
tinct. By comparing the topology of the network of particle
contacts in a representative sample of CJ states, we have
found that this criterion is sufficient to reliably determine
whether two states are distinct or identical.

This procedure allows us to determine the number 7, of
distinct collectively jammed states at each fixed number of
independent trials n,. As expected, if two CJ states have dif-
ferent packing fractions, they are distinct, with different con-
tact networks and dynamical modes. This property holds
with very high numerical precision—the packing-fraction
difference of 107!3 already assures that the two states are
distinct.

However, it is not true that all collectively jammed states
with the same packing fraction are identical. For example,
the CJ states shown in Fig. 2 have the same packing fraction,
but they possess different contact networks and eigenvalue
spectra. This is a clear demonstration that two collectively
jammed configurations at the same packing fraction can have
very different structural properties.

We have also calculated the total number of contacts be-
tween particles, N.—i.e., the number of bonds that satisfy
r;j<d;—in our slightly compressed jammed configurations.
We find that the number of contacts in the collectively
jammed states satisfies the relation [17,26]

N.=N""=2(dN' —d +1). (5)

The minimum number of contacts required for mechanical
stability of the system, N."", can be calculated by equating
the number of degrees of freedom to the number of con-
straints. Note that an extra constraint is required to prevent
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FIG. 3. Fraction f, of distinct collectively jammed states with
an excess number of contacts A=N.—N"" over a range of system
sizes, N=6 (circles), 8 (squares), 10 (diamonds), 12 (upward tri-
angles), and 14 (downward triangles). For N=6, all CJ states have
A=0.

particle expansion. We have found that nearly all of the col-
lectively jammed states have N.=N]"; fewer than 1% of
these states have N,>N."" as shown in Fig. 3. All configu-
rations that are not collectively jammed have fewer contacts
than N

IV. RESULTS

In the preceding two sections, we described our methods
for generating and counting distinct collectively jammed
states. We will now present the results from these analyses.
We will first discuss how the number of CJ states depends on
parameters such as the number of trials and system size. We
then decompose the probability density of obtaining a CJ
state at a given packing fraction [Eq. (1)] into the density
p(¢) of CJ packing fractions and their frequency distribution
B(¢). We also consider under what conditions all of the pos-
sible CJ states can be enumerated and determine whether
strong conclusions can be made about the distributions of CJ
states in large systems even though complete enumeration is
not possible.

Our studies of the number of distinct CJ states n, versus
the number of independent trials n, led to several surprising
observations. First, we find that these systems possess a sig-
nificant fraction of rare CJ states and thus an exponentially
large number of trials are required to obtain nearly all states.
Second, a master curve appears to describe n,(n,) for systems
with N=10, as shown in Fig. 4. (Each data point in this
figure was obtained by averaging over at least 100 distinct
permutations of the n, trials.) Our numerical results indicate
that when 7, is more than about 20% of the total number of
distinct CJ states, n'”, the curve ny(n,) can be accurately ap-
proximated by

s ny :
EZI—A loglo E . (6)

where A= 0.05.

Our direct computations for small systems (N=6, 8, and
10) and numerical fits to the master curve (6) for N=12 and
14 indicate that both n\** and n'*" increase exponentially with
system size as shown in Fig. 5. However, both these quanti-

PHYSICAL REVIEW E 71, 061306 (2005)

0.6

tot
ng/n,

0.4

-8 -6 -4 " -2
log,, (n,/1,)

FIG. 4. Fraction of CJ states n,/n*" versus the ratio of the num-
ber of trials, n,, to the total number of trials, 7", required to find all
CJ states n?’t for several system sizes: N=6 (dot-dashed line), 8
(dashed line), 10 (thick solid line), 12 (long-dashed line), and 14
(dotted line). The curves for N=10, 12, and 14 collapse. The thin
solid line is a least-squares fit to Eq. (6). The diamond, upward
triangle, and downward triangle symbols give the maximum num-
ber of trials attempted for N=10, 12, and 14, respectively.

ties remain finite for any finite system. In particular, for the
smallest system sizes, we increased the total number of trials
by at least a factor of 10 and did not find any new collec-
tively jammed states. We also used several different algo-
rithms for generating CJ states—e.g., compression and ex-
pansion of particles followed by relaxation using molecular
dynamics with dissipative forces along 7#; and frictional
forces perpendicular to 7;—and these did not lead to any
new CJ states that were not already found using the protocol
described in Sec. II. The maximum number of trials and
fraction of CJ states obtained are provided in Table I.

As indicated in Eq. (1), the probability distribution P(¢)
for obtaining a collectively jammed state at a particular pack-
ing fraction ¢ can be factorized into two composite func-
tions: the density of CJ states p(¢) and the frequency B(¢)
with which these states occur. In our simulations, the distri-
bution P(¢) is calculated from the relation

np(p+d¢) —np(4)
n

1

P(¢p)dd= (7)

Here np(¢) is the total number of CJ states (counting all
repetitions of the same state) with packing fractions below .

25 T T T T r T

FIG. 5. The total number of distinct CJ states n.* (circles) and
the number of trials required to find them (squares) versus system
size N. The solid and dotted lines have slopes equal to 1.2 and 1.7,
respectively.
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max

TABLE I. Maximum number of trials performed, n,"", and frac-
tion of CJ states obtained (1,/n'"") .y versus system size N.

N ™ (ng/ n;(’t) max
10° 1.0

8 10° 1.0

10 29 X 100 1.0

12 28 X 10° 0.90

14 26X 10° 0.60

The density of CJ states is evaluated using an analogous
relation

ns(¢+ dd)) - ns(¢)

s

p(p)dep= (®)

where ny(¢) is the number of distinct CJ states that have
been detected in the packing-fraction range below ¢. [In fact,
we have used the number of distinct packing fractions to
define p(¢) in place of the number of distinct CJ states
n,(¢). However, this does not affect our results because dis-
tinct states with the same ¢ are rare in 2D bidisperse sys-
tems.] We note that both the probability density (7) and the
density of CJ states (8) are normalized to 1. The frequency
distribution B(¢)=P(¢)/p(¢) is normalized accordingly.

Below, we show how P(¢), p(¢), and B(¢) depend on
the fraction of CJ states n,/n" and system size N. To plot
these distributions, we used ten bins with the endpoint of the
final bin located at the largest CJ packing fraction ¢,,,, for
each N. We recall that the distribution of CJ packing frac-
tions p(¢) does not depend on the protocol used to generate
the CJ states. The protocol dependence of the distribution
P(¢) is captured by the frequency distribution B(¢).

The probability distribution P(¢) of CJ states is shown in
Fig. 6 for two small systems N=10 and 14. The results indi-
cate that P(¢) depends very weakly on the fraction ny/n'" of
ClJ states obtained—only 5% of the CJ states are required to
capture accurately the shape of P(¢) for these systems. This
result holds for all system sizes we studied, which implies
that the distribution of CJ states can be measured reliably

07 0.74 078 082 086

FIG. 6. Probability distribution P(¢) for obtaining a CJ state at
¢ for N=10 (solid line) and N=14 (dotted line) at (n,/n\") pax. The
distributions at n,/n'"'=0.05 (squares for N=10 and triangles for
N=14) overlap those with larger n,/n'"

s "
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FIG. 7. Density of collectively jammed packing fractions p(¢)
for (a) N=10, (b) 12, and (c) 14 at ns/ni,O‘:O.Z (solid lines), 0.4
(dotted lines), 0.6 (dot-dashed lines), 0.8 (long-dashed lines), and
1.0 (dashed lines).

even in large systems [16,19]. Note that the width and loca-
tion of the peak in P(¢) do not change markedly over the
narrow range of N shown in Fig. 6.

To see significant changes in P(¢), the system size must
be varied over a larger range. P(¢) for N=18, 32, 64, and
256 is shown in Fig. 1 at fixed number of trials n,=10*. The
width of the distribution narrows and the peak position shifts
to larger ¢ as the system size increases. In Ref. [16], we
found that P(¢) for this 2D bidisperse system becomes a &
function located at ¢,=0.842 in the infinite-system-size
limit. What causes P(¢) to narrow to a & function located at
¢y when N— 0? Is the shape of the distribution P(¢) deter-
mined primarily by the density of states p(¢), or does the
frequency distribution B(¢) play a significant role in deter-
mining the width and location of the peak? We will shed
light on these questions below.

We first show results for p(¢) and B(¢) as functions of
the fraction n,/n™" of distinct CJ states obtained. In Fig. 7,
p(¢) is shown for several small systems. In contrast to the
total distribution P(¢), the density of states p(¢) depends on
ng/n significantly. For N=10, a system for which we can
calculate nearly all of the CJ states, the curve p(¢) reaches

its final height and width when n,/n'®~0.5. However, its

shape still slowly evolves as n,/n* increases above 0.5; the
low-¢ part of the curve increases while the high-¢ side de-
creases. This implies that the rare CJ states are not uniformly
distributed in ¢, but are more likely to occur at low packing
fractions below the peak in p(¢). Similar results for p(¢) as

functions of n,/n'" are found for N=12 and 14. By compar-

061306-5



XU, BLAWZDZIEWICZ, AND O’HERN

FIG. 8. Density of collectively jammed packing fractions p(¢)
for N=8 (solid), 10 (dotted), 12 (dot-dashed), and 14 (long-dashed)
at (ng/ 1! max-
ing p(¢) at fixed n,/n'™, we also find that p(¢) narrows with
increasing N. To further demonstrate that p(¢) narrows, the
density of states is plotted in Fig. 8 for several system sizes
at (n,/n'®) max listed in Table L.

The dependence of the frequency distribution B(¢) on the
system size N and the fraction n,/n\"* of CJ states obtained is
illustrated in Fig. 9. The results show that in contrast to the
functions P(¢) and p(¢), the distribution B(¢) achieves its
maximal value at the highest packing fraction for which CJ
states exist, @na.. By comparing B(¢) for different system
sizes at fixed n,/n'* we find that ¢,,,, increases with increas-
ing N.

The frequency distribution B(¢) becomes more strongly
peaked at ¢, as n,/n increases. The evolution of B(¢)
with n,/n'® can be explained by noting that B(¢)

=P(¢)/p(¢) and that P(¢) does not depend on n,/n'" for

20 . . .
(@) /
15 f ’

60 r (b)

20

200 . : .
150 | /

5100 F s

0 1 1
07 0.74 078
o

FIG. 9. Frequency distribution B(¢) for (a) N=10, (b) 12, and
(c) 14 for ny/n®=0.2 (solid lines), 0.4 (dotted lines), 0.6 (dot-
dashed lines), 0.8 (long-dashed lines), and 1.0 (dashed lines).
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log,, B,(0)

logy, B,(0)

log,, B.()

FIG. 10. Frequency distribution B,(¢) normalized by the peak
value for (a) N=10, (b) N=12, and (c) N=14 at ns/ni,m:O.Z (solid
lines), 0.4 (dotted lines), 0.6 (dot-dashed lines), 0.8 (long-dashed
lines), and 1.0 (dashed lines). Least-squares fits to exponential
curves (thin solid lines) are also shown for the largest n,/ n;m at each
N.

ny/n®=0.05 according to the results shown in Fig. 6. The
density of states p(¢) and the frequency distribution B(¢)
must therefore behave in opposite ways to maintain constant
P(¢). As shown earlier in Fig. 7, the peak in p(¢) widens
(for ny/n'"<0.5) and shifts to lower packing fractions as
ny/n'® increases. Thus, the distribution B(¢) must decrease
at low packing fractions and build up at large packing frac-
tions with increasing n,/n'.

In Fig. 10, we show the frequency distribution B,(¢)
=B(P)! Bax» Which is normalized by the peak value By
The results are plotted on a logarithmic scale. The frequency
distribution varies strongly with ¢; CJ states with small
packing fractions are rare and those with large packing frac-
tions (¢=0.83) occur frequently. We find that B,(¢) is ex-
ponential over an expanding range of ¢ as n,/n'" increases.

For N=10, B,(¢) increases exponentially over nearly the en-

tire range of ¢ at n,/n'®'=1. We see similar behavior for N

=12 and 14 in panels (b) and (c) of Fig. 10; thus we expect
B,(¢) to be exponential as N /N — 1 for N>10. We have

calculated least-squares fits to

B,=Apexp(Bgd) )

for the largest n,/n® at each system size. As pointed out

above, the frequency distribution becomes steeper with in-
creasing N; we find that B increases by a factor of 3.5 as N
increases from 10 to 18 (not shown). Note that reasonable
estimates of B can be obtained even at fairly low values of
ngn'.

We showed in Fig. 10 that the frequency distribution is
not uniform in ¢; in contrast, it increases exponentially with
¢. Figure 11 shows another striking result; the frequency
distribution is also highly nonuniform within a narrow range
of ¢. In this figure, we plot the cumulative distribution F), of
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FIG. 11. Cumulative probability distribution F, of CJ states in a
narrow range of packing fractions d¢ for N=12. The index i de-
notes the position of the state in a list ordered by the frequency of
occurrence and 7, is the total number of states in the given interval.
The solid lines correspond to bins centered on ¢=0.73, 0.75, 0.77,
and 0.79; the dashed lines labeled 1, 2, 3, and 4 correspond to bins
centered on ¢=0.65, 0.81, 0.83, and 0.69, respectively. The width
of each bin is A¢$=0.02. The inset shows that the data are well
described by Eq. (10), where Ap=2.4 and « varies from 0.3 to 0.4.

the probabilities of jammed states in a narrow interval d¢
versus the index 7 in a list of all distinct states in d¢ ordered
by the value of the probability of each state. The data for
several different intervals appear to collapse onto a stretched
exponential form

F=exp[-Ap(1-i/ny)], (10)

where ng is the number of distinct CJ states within d¢ and
the exponent « varies from 0.3 to 0.4. These results clearly
demonstrate that CJ states can occur with very different fre-
quencies even if they have similar packing fractions.

From our studies of small systems, we find that both the
density p(¢) of CJ packing fractions and the frequency dis-
tribution B(¢) narrow and shift to larger packing fractions as
the system size increases. (See Figs. 7 and 10.) How do these
changes in p(¢) and B(¢) affect the total distribution P()
and can we determine which changes dominate in the large
system limit? To shed some light on these questions, we
consider the position of the peak in P(¢) with respect to the
maximal packing fraction of CJ states ¢,,,, for several sys-
tem sizes. In the absence of changes in p(¢) as a function of
¢— x> the maximum of P(¢) should shift roward ¢
=pmax With increasing system size, because the frequency
distribution 8 becomes more sharply peaked at ¢,,,, accord-
ing to the results in Fig. 10. However, as shown in Fig. 12,
we find the opposite behavior over the range of system sizes
we considered: the peak of P(¢) shifts away from ¢,,,. This
suggests that the density of states, not the frequency distri-
bution, plays a larger role in determining the location of the
peak in P(¢) in these systems.

Additional conclusions about the relative roles of the the
density of states and the frequency distribution on the posi-
tion and width of P(¢) can be drawn from our observation
that the frequency distribution 8 is an exponential function
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P@), B.(¢) .

[4;]
T

FIG. 12. P(¢') (thick lines) and B,(¢’) (thin lines) for N=10
(solid line), 12 (dotted line), and N=14 (dot-dashed line) at
(ng/n'*) may> Where ¢’ =p+Ap. P(¢p) and B,(¢p) for N=10, 12, and
14 have been shifted by A¢=0.013, 0.005, and 0 respectively, so
that B, for the three system sizes coincide. B,(¢) for each N has
also been amplified by a factor of =~20.

of ¢ (cf. the discussion of results in Fig. 10) and that P(¢) is
Gaussian for sufficiently large systems (as shown in [16] and
illustrated in Fig. 13). If we assume that the exponential form
of the frequency distribution (9) remains valid in the large-
system limit, the density of states p(¢)=P(¢p)/B(¢p) is also
Gaussian with the identical width o(N). The location of the
peak in P(¢) is

Gp(N) = §,(N) + BL(N)o*(N), (11)

where d):(N) is the location of the peak in p(¢). In previous
studies [16], we found that the width of P(¢) scaled as o
~N with Q=0.55. We have also some indication that

30 T T T

— 20 ¢ 1

10 e} 1

0 1 1 1
40 ' '

150 Fg ' : :

@100 r 1

0.78 0.8 0.82 0.84 0.86
0

FIG. 13. The distribution P(¢) of CJ states for N= (a) 18, (b)
32, (c) 64, and (d) 256 are depicted using circles. The solid lines are
least-squares fits of the large-¢ side of P(¢) to Gaussian
distributions.
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Bﬁo2 decreases with increasing system size: BB02=0.017 at
N=12 compared to 0.012 at N=18. However, we are not
currently able to estimate B in the large-N limit.

If the system-size dependence of By is weaker than N,
the quantity BBO'Z will tend to zero and the frequency distri-
bution will not influence the location of the peak in P(¢). In
this case P(¢) becomes independent of the frequency distri-
bution in the limit N—oe for a class of protocols that are
characterized by a similar frequency distribution 8 as our
present protocol. Thus, as our preliminary results suggest,
random close packing can be defined as the location of the
peak in p(¢) when N— oo, and this definition is completely
independent of on the algorithm used to generate the CJ
states. In the opposite case, where the system-size depen-
dence of Bg is stronger than N??, the position of the peak in
P(¢) results from a subtle interplay between the density of
states and the frequency distribution. However, even in this
case one can argue that the dependence of the position of the
peak only weakly depends on the protocol: a shift of the peak
position requires an exponential change in the frequency dis-
tribution B(¢).

V. CONCLUSIONS

We have studied the possible collectively jammed con-
figurations that occur in small 2D periodic systems com-
posed of smooth purely repulsive bidisperse disks. The CJ
states were created by successively compressing or expand-
ing soft particles and minimizing the total energy at each step
until the particles were just at contact. By studying small 2D
systems, we were able to enumerate nearly all of the collec-
tively jammed states at each system size and therefore de-
compose the probability distribution P(¢) for obtaining a CJ
state at a particular packing fraction ¢ into the density p(¢)
of CJ packing fractions and their frequency distribution
B(¢). The distribution B(¢) depends on the particular proto-
col used to generate the CJ configurations, while p(¢) does
not. This decomposition allowed us to study how the
protocol-independent p(¢) and protocol-dependent B(¢) in-
fluence the shape of P(¢).

These studies yielded many important and novel results.
First, the probability distribution P(¢) of CJ states is nearly
independent of n,/n”, and thus it can be measured reliably
even in large systems. This finding validates several previous
measurements of P(¢) [16,19]. Second, the number of dis-
tinct CJ states grows exponentially with system size. In ad-
dition, a large fraction of these configurations are extremely
rare and thus an exponentially large number of trials are
required to find all of the CJ states. Third, the frequency
distribution B(¢) is nonuniform and increases exponentially
with ¢. We also found that even over a narrow range of ¢,
the frequency with which particular CJ states occur is
strongly nonuniform and involves a large number of expo-
nentially rare states. Finally, we have shown that P(¢) be-
comes Gaussian in the large-N limit. Since P(¢)
=p(¢)B(¢) and B(¢p) is exponential, we expect that p(¢p) is
also Gaussian and controls the width of P(¢) for large N. We
also have preliminary results that suggest that the contribu-
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tion from B(¢) to the shift of the peak in P(¢) decreases
with increasing N. We expect that p(¢) will determine the
location of the peak in P(¢) in the large-N limit, and thus it
is a robust protocol-independent definition of random close
packing in this system.

VI. FUTURE DIRECTIONS

Several interesting questions have arisen from this work
that will be addressed in our future studies. First, we have
shown that the frequency with which CJ states occur is
highly nonuniform. It is important to ask whether the rare
states can be neglected in analyses of static and dynamic
properties of jammed and nearly jammed systems. For ex-
ample, we have shown that P(¢) is insensitive to the fraction
ny/n® of CJ states obtained and thus P(¢) is not influenced
by the rare CJ states. However, rare CJ states may be impor-
tant in determining the dynamical properties of jammed and
glassy systems if these states are associated with “passages”
or “channels” from one frequently occurring state to another.
Moreover, an analysis of the density of states and the fre-
quency distribution (both as a function of ¢ and locally in ¢)
may shed light on the phase-space evolution of glassy sys-
tems during the aging process.

A closely related question is what topological or geo-
metrical features of configurational phase space give rise to
the exponentially varying frequency distribution? Can one,
for example, uniquely assign a specific volume in configura-
tional space to each jammed state? A candidate for such a
quantity is the volume (). of configuration space in which
each point is connected by a continuous path without particle
overlap to a particular CJ state. It is likely that those CJ
states with large (), will occur frequently for a typical com-
paction algorithm, while those with small ). will be rare.

Another important question is whether the results for
p(@), B(¢), and P(¢) found in 2D bidisperse systems also
hold for other systems such as monodisperse systems in 2D
and 3D. Does p(¢) still control the behavior of P(¢) or does
the frequency distribution play a more dominant role in de-
termining P(¢)? To begin to address these questions, we
have enumerated nearly all of the distinct collectively
jammed states and calculated P(¢), p(¢), and B(¢p) in small
2D periodic cells containing N=4-32 equal-sized particles.

In our preliminary studies, we have found several signifi-
cant differences between 2D monodisperse and bidisperse
systems, which largely stem from the fact that partially or-
dered states occur frequently in the monodisperse systems.
First, in 2D monodisperse systems there is an abundance of
distinct CJ states that exist at the same packing fraction. For
example, in a monodisperse systems with N=24, multiple
distinct states occur at 19% of the CJ packing fractions com-
pared to less than 1% in bidisperse systems with N=14. Sec-
ond, for the system sizes studied, quantitative features of the
distributions of CJ states depend on whether N is even or
odd. Third, P(¢) can possess rwo strong peaks. For example,
two peaks in P(¢) occur at ¢, =0.805 and ¢,~0.844 for
N=24 as shown in Fig. 14. Moreover, the large-¢ peak that
corresponds to partially ordered configurations is a factor of
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FIG. 14. P(¢) (solid line), p(¢) (dotted line), and B(¢) (dot-
dashed line) for a 2D monodisperse system with N=24.

3 taller than the small-¢ peak that corresponds to amorphous
configurations. Finally, the maximum in B(¢) coincides with
the large-¢ peak in P(¢) and B(¢) decays very rapidly as ¢
decreases. As shown in Fig. 14, the rapid decay of B(¢)
significantly suppresses the contribution of the peak in p(¢)
to the total distribution P(¢). Thus, B(¢), which depends on

PHYSICAL REVIEW E 71, 061306 (2005)

the protocol used to generate the CJ states, may strongly
influence the total distribution P(¢) even in moderately sized
2D monodisperse systems.

Many open questions concerning monodisperse systems
in 2D will be answered in a forthcoming article [27]. We will
measure the shape of P(¢) as a function of system size and
predict whether p(¢) or B(¢) controls the width and location
of the peak (or peaks) in the large-N limit. The fact that ()
strongly influences P(¢) at small and moderate system sizes
explains why it has been so difficult to determine random
close packing in 2D monodisperse systems [18]—different
protocols have yielded different values for ¢, [20,28].
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